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Analytic structure of the one-dimensional random-bond 
Ising model 

P S Davidst 
Thwhcal Division, Los Alamos National Laboratory. Los Alamos, NM 87545, USA 

Received 18 May 1994, in final form 23 August 1994 

Abstract. The quenched average of the one-dimensional random-bond (fJ) king model io a 
magnetic field is studied using a technique based on the transformation of a product of random 
2 x 2 mavices to an iterated conformal map. This approach allows for the underlying analytic 
structure of the random mahix product to appear as a natunl consequence of the conformal 
mapping of the extended complex plane. The quenched avenge of the characteristic exponent 
(i.e. the free energy) is obtained by averaging over a specified probability distribution of nearest- 
neighbour coupling. The evaluation of the quenched average of the characteristic exponent is 
performed within the iscenbopic approximation. The isoenvopic approximation treats all bond 
configurations with the same number of anfifmmagnetic domains having the same entropy 
and enables the enumeration of equivalent configurations. Combinatorial methods can then be 
used to express the average over all realizations of the random mahix product as a combinatorial 
sum. The combinatorial sum is evaluated using resummation methods and an explicit expression 
for the quenched average of the characteristic exponent is thereby obtained for the case of the 
random-bond king model. The explicit expression for the free energy is dependent on constants 
which are calculated numerically. 

1. Introduction 

Products of random 2 x 2 matrices often appear in the theory of one-dimensional disordered 
systems. Despite their apparent simplicity, exact solutions exist for relatively few cases and 
a geat deal of effort has been devoted to the study of such systems numerically. The main 
difficulty arises when the quenched average of thermodynamic quantities are considered. 
There are several techniques which can be used in the evaluation of the quenched average. 
The two most frequently used in the context of spin glasses are the replica trick, and the 
TAP approach [l]. The replica trick consists of averaging over n replicas of the system and 
then considering the limit n + 0. The TAP approach, first derived by Thouless et al is 
based on averaging the mean-field equations of motion and was formulated to avoid the 
mathematical difficulties associated with the replica trick. The approach outlined in this 
work does not use either technique and is based on simple combinatorics to enumerate 
approximately equivalent configurations of the random-bond Ising model. 

Recently, there have been a number of results which give formally exact solutions to the 
one-dimensional random king model. One approach is based on the cycle expansion of the 
Lyapunov characteristic exponent 121. This method gives formally exact results using the 
Ruelle zeta function representation of the generating function for the Ising spin glass. The 
quenched average is evaluated using the replica trick. The cycle expansion gives numerical 
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results for the Lyapunov characteristic exponent to N-digit accuracy using cycles of length 
N. 

An alternative approach has been developed recently which is based on mapping the 
random matrix product with given site-dependent coupling and field into a new set of 
couplings and field variables [3]. The~mapping is iterated and the fixed-points studied. The 
fixed-point analysis shows that the mapping converges to a constant coupling fixed-point 
in zero field. The average is performed by introducing auxiliary spins. This method does 
not give an explicit expression for the quenched average of the characteristic exponent, but 
does yield convergent numerical results. This type of iterated mapping is closely related to 
the approach to be described in the present work. 

In the following, an approach based on the transformation of a product of random 
2 x 2 matrices to an iterated conformal mapping is outlined. The approach allows for 
the underlying analytic structure of the random matrix product to appear as a natural 
consequence of the conformal mapping of the extended complex plane. Similar bilinear 
mappings have been obtained [a], but have not made use of the conformal structure of 
the matrix product. The analytic structure and symmetry of spin and matrix models in the 
complex temperature plane or the complex coupling plane [7,8] can also be investigated 
through use of the iterated conformal mapping technique. 

The mapping can be parametrized in terms of elementary functions and various limits 
of the parametrized map are discussed. The quantity studied is the quenched average of the 
characteristic exponent. The characteristic exponent gives the exponential rate of divergence 
of the matrix product and the quenched average is taken over a specified probability 
distribution of near-neighbour coupling. The evaluation of the averaged characteristic 
exponent is performed using combinatorial methods to express the average over all 
realizations of the possible configurations of the random matrix product as a combinatorial 
sum. The combinatorial sum can subsequently be evaluated using resummation methods for 
combinatorial sums outlined in the monograph by Egorychev [9]. An explicit expression 
for the quenched average of the characteristic exponent is thereby obtained. 

2. The 1D king chain 

The partition function for the random-bond king model (RBIM) is defined as the sum of 
Boltzmann weights over all configurations of the spins (uj = f l )  and is given by 

where 

N 

- B H  = KjOjUj+, + hUj 
j=1 

where Kj = B J j ,  Jj is a sequence of site-dependent nearest-neighbour coupling, and h 
is a constant external magnetic field. For the random-bond Ising model, the sequence 
of nearest-neighbour coupling are independent random variables with a given probability 
distribution. The spins (ui) are located at the N sites of a one-dimensional lattice subject 
to periodic boundary conditions. This model defines the simplest spin glass [ 101 which 
exhibits non-bivial behaviour due to frustration and has been extensively studied [lo, 111. 
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In the transfer matrix formalism [l, 121, the partition function is the trace of the matrix 
product given by 

where we have used periodic boundary conditions applied to the chain. The transfer matrix 
takes into account all possible configurations of nearest-neighbour spins and is given by 

1 = exp(Kj + h)exp(-Kj) ( exp(-Kj) exp(Kj - h)  

When the coupling is siteindependent, the partition function is readily evaluated due to the 
cyclic property of the trace, and is simply the sum of the product of the two eigenvalues 
(A*) of T (i.e. ZN = A$ +A!') [12]. 

For an arbitrary sequence of site-dependent coupling (J , ) ,  the transfer matrices do not, 
in general, commute and therefore Cannot be simultaneously diagonalized. The trace of 
the matrix product will not be the sum of the product of the eigenvalues. However, the 
evaluation of the partition function can be obtained by expanding the matrix product in a 
series and evaluating the trace term by term. To obtain the series expansion, it is useful to 
express the transfer matrices in terms of the Pauli spin matrices 

I; = eKl cosh(h)(l + U .  aj) 

where I is the 2 x 2 identity matrix, and U = (Ux,  uy, uJ is the vector of the Pauli matrices. 
The vector aj can be expressed in terms of the site-dependent coupling and external field 

(3) 
where G,, are unit vectors in along the x -  and z-axes, respectively. It is convenient to 
define 

by 
aj = tanh(h)& + eCZKlsech(h)& 

which is the angle relative to the z-axis. 
To study the underlying analytic structure, it is necessary to perform a site-independent 

rotation of the transfer matrices, such that the aj lies in the x-y plane. This rotation 
leaves the trace invariant but allows for a complex representation for the transfer matrices. 
Therefore, the rotated transfer matrices are given by 

where the z j  are complex numbers given by 

zj  = tanh(h) + ie-2KJsech(h) (5 ) 

and the phase of z, is given in (4). The partition function becomes 

ZN = e% KJ coshN(h)Tr n R, ) 
where the trace is performed on the product of the rotated transfer matrices. The complex 
form of the rotated transfer matrices is the starting point for the derivation of the iterated 
conformal map. 
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Z.I. The map 

The trace in (6) still cannot be evaluated since the rotated transfer matrices on differing 
sites, in general, do not commute. However, the rotated transfer matrices are elements 
of GL(2,  @) and these matrices induce a Mobius transformation on the extended complex 
plane. The matrix product can be expressed as an iterated conformal map which enables 
the study of the underlying analytic structure of the partition function. 

To derive the map, consider the matrices which are elements of GL(2,  @) of the form 

such that det(Mi) # 1. It is clear that the rotated transfer matrices are of the same general 
form. Let us define the partial product of the rotated transfer matrices 

n 

M " = n R j  
j = l  

and therefore 

'k(kfN) = 2 Re(qN). 

Therefore, the partition function is obtained by deriving a recurrence relation for the qjs. 
This procedure is similar to the one outlined in Derrida and Hilhorst [.5] in which a recursion 
relation for the random-field king model is derived. The recurrence relation is derived from 

M j  = Mj-1 Rj (7) 
which follows from the definition of the Mjs.  Therefore using (7), one obtains a three term 
recursion relation for 

for 2 < j < N - 1 with the initial terms, q1 = 1, and q2 = 1 t z1T2.  The trace of the rotated 
transfer matrices is given by the Nth iterate of (8), and the partition function is given by 

(9) ZN = ezklR;  coshN(h) 2 Re(qN), 

For the case of J, = J constant coupling, (8) reduces to a finite difference equation with 
constant coefficients and can be evaluated to give the standard transfer matrix result. 

The recurrence relation can be simplified by considering the ratio X j  = qj/qj-I. This 
gives rise to a tail sequence, and the Nth iterate is given by 

N 

j=I  
q N  = n x j .  

The recurrence for XI becomes 

with initial terms, X 2  = 1 + ZIZ,  and XI = 1. Further simplification is possible through 
the introduction of a new rescaled variable wj = (Xi  - l)/Tjj. We obtain the simple map 

wj + zj 
Wj+l = - 

1 + T j W j  
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with the initial term W I  = 0. The resulting expression for the partition function is given by 

Z N  = eXL1 Kz coshN(h) 2 Re n 1 + ?jwj (11) 
<i="l 1 

in terms of the bilinear mapping derived in (10). 
Equation (10) for wj+l is of the form of a Mobius transformation of the extended 

complex plane. This type of bilinear mapping of the extended complex plane is conformal 
(angle preserving). and has the properties that it maps circles onto circles and lines onto 
l ies ,  and for IzI < 1 it maps IwI < 1 into the unit circle (Iw'l < 1) [13, 141. The fixed- 
points of the Mobius transformation are given by wrp = &eiR, and are symmetric about the 
origin and lie on the unit circle. Furthermore, for wj on the unit circle it is easy to show 
that wj+l remains on the unit circle. Thus the map takes the unit circle in the complex 
plane onto the unit circle. This is a property of the underlying conformal structure of the 
map and will be used in the evaluation of the partition function. 

The input sequence zj for some general Jj lie along the line Re(zj) = tanh(h) in 
the complex plane. For ferromagnetic coupling Jj z 0, the corresponding zj lie along 
the line within the unit circle. For antiferromagnetic coupling Jj < 0, the corresponding 
zj lie along the line outside the unit circle. For Jj = 0, this corresponds to ]zj1 = 1 
which results in a singular Mobius transformation. In the limit of infinite ferromagnetic 
coupling, zj approaches the real axis along the line Re(zj) = tanb(h). In the limit of 
infinite antiferromagnetic coupling, zj  diverges along the line Re(zj) = tanh(h). 

2.2. Parametrization of the map 

The Mobius transformation can be parametrized in terms of elementary functions with the 
remarkable feature that the parametrization is valid in both the ferromagnetic (lzjl < 1) 
and the antiferromagnetic ([zjl > 1) regions of the complex plane. To facilitate the 
parametrization, we define a new rescaled variable uj = e-"Jwj. The transformed map 
reads 

. . .  
Equation (12) is parametrized using the following definitions: 

uj tanh({;) lzjl = tanh(4jj) 
with 

where q5j is complex in the antiferromagnetic region. From the above definitions, we obtain 
the parametrized conformal map of (12) given by 

(13) tanh({j+I) = e-i(oj+l-oj) tanh({. J + 4, 1 )  

for 1 < j < N - 1 with initial term 51 = 0. 
Equation (13) in parametrized form is valid in both regions of the complex plane and 

is nearly additive in the parameter {j . The presence of the phase destroys the additivity 
and results from the non-commutativity of the rotated transfer matrices. In the limit of 
vanishing field h + 0, the phase approaches n/2 and the phase difference vanishes. Thus, 
in zero field the additive solution is given by 

"-1 

5" = x4i 
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which corresponds to the product of the eigenvalues of the rotated transfer matrices. In a 
weak field, the parametrization is approximately additive and an approximate form for the 
partition function can be obtained. 

In terms of the parametrized mapping given by (13), the complex eigenvalues of the 
product of the rotated transfer matrices are given by 

and A(-) is the complex conjugate of A(+), and the partition function is 

Z N  = &Ll K8 coshN@) (A(+) + A(-)).  (16) 
We want to investigate the deviation from the commutative case by using the additive 

solution of (13). and defining new map parameters 
.. . 

< n = x @ i + u n  (17) 
i=l 

where the first term is the additive result and the second term contains the non-commutative 
part of the mapping. It is clear from the explicit form of the parametrized map that for 
vanishing phase difference 8jtl - Oj -+ 0, we require that uj+l = v j .  

To examine the effect of the separation of the commutative and non-commutative map 
parametrization on A(+), we introduce relative map parameters, An = U,+, - U,,, and 
r,, = U,+I + U. rather than work with the set of non-commutative parameters, ( w ) .  The 
non-commutative parameters can be expressed in terms of partial sums of the relative map 
parameters. Explicitly, we find that 

"-1 

r. = An + 2 A, 
i=I 

The motivation for the redefined map parameters can be seen within the context of the 
&J model. Consider a domain of ferromagnetic ( J )  or antiferromagnetic ( - J )  coupling. 
The non-commutative map parameter does not change within a given domain and changes 
discontinuously at a domain boundary. This can be readily seen from (13). Therefore, An 
vanishes within a domain and is non-zero at domain boundary. 

Equation (18) can be used to rewrite A(+) as the product of two terms 

&Ab (19) A(+) = 

where 

and 

where 

It is important to note that the zero field (additive result) is recovered since in the zero field 
case all the A. = 0. and we obtain the product of the eigenvalues of the transfer mauices. 
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In (20). the first term in A, is the product of the large eigenvalues of the rotated transfer 
matrices, and the second term is the weighted product of the small eigenvalues of the rotated 
transfer matrices. The non-commutativity enters through the weighting factor of the small 
eigenvalue and depends on the domain structure. Furthermore, Q, is the partial product of 
the ratio of the small to the large eigenvalue of the transfer matrix and is less than unity, 
therefore it is expected that A b  m 1 in (19), and A, will be the dominant contribution. 

2.3. A simple example 

Let us consider the case when the coupling takes on two values Ji = h J .  Explicitly, we 
consider k antiferromagnetic bonds chosen at random out of the total of N bonds of the 
chain. These antiferromagnetic impurities will form q domains. Therefore, for a chain 
of length N we will have Nx antiferromagnetic bonds forming q domains, where x is 
the concentration of the antiferromagnetic impurities. For any fixed configuration of the 
k antiferromagnetic impurities, we must evaluate (13) to determine A F )  and hence the 
partition function. 

For K, = K ,  we define lzil = U, and for Ki = - K  lzil = U. From (13). it is clear that 
the only non-zero contributions for U occur at a domain boundary since the phase difference 
does not vanish at a domain boundary. Therefore, the Ajs are zero except at a domain wall, 
which implies that E:;' Ai = 2qA is the average of the difference of the non-commutative 
map parameters. Here A is a complex quantity determined numerically, which depends on 
the parameter values chosen, and 2q is the number of domain walls on the chain. 

In figure 1, we show the results for Re(u) versus iteration number. The gaps in 
the plot occur at the domain walls where the non-commutative map parameter changes 
discontinuously. From figure 1, an estimate of Re(A) can be obtained by computing the 
average slope of the graph. Figure 2 shows the imaginary part of A, which after only a 
few iterations converges to three possible values, Im(A) = 0, x / 2 ,  x and enables the exact 
determination of the imaginary part of A. Furthermore, numerical simulation indicates that 
after only approximately 10 iterations, I tanh(()l = 1. Figure (3)  indicates the convergence 
of the map to the unit circle. This is a result of the general properties of the underlying 
conformal map, which has attractive fixed-points lying on the unit circle. 

The approximation for Re(A) can be used in the calculation of A(+). To find an 
approximate solution for A(+) with k antiferromagnetic impurities forming q domains, the 
results of the previous section are used (Ab % 1 for large N) and we obtain 

(23) 
which is valid in the limit of large N. For A = 0, (23) reduces to the commutative result 
and we have therefore obtained an approximate form for complex eigenvalue for the rotated 
transfer mahices. which depends on the number of domains q and the complex parameter 
A. Furthermore, from the values of h ( A )  obtained in figure (2),  it is easily shown that 
the approximate expression for A;) is red. 

A F ) ( ~ )  m (1 + u)~- ' ( ( I  + u ) ~  + e-**(l - u ) ~ - ~ ( I  - u ) ~  

3. Random-bond model 

We want to consider the case when the bonds are distributed according to the simple 
probability distribution given by 

N 
p = n pS(J - J i )  + (1 - p)S(J + J,) (24) 

i=l 
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Figure 1. The real pm of v versus itemtion number for x = 4, IPI = 1.5 and h = 05. The 
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where p is the probability that a given site has ferromagnetic coupling, and 1 - p is 
the probability that a site has antiferromagnetic coupling. It is convenient to expand the 
distribution in a binomial expansion to obtain 

where 

This type of series expansion of the probability distribution will lead to a combinatorial 
sum when averages over the expanded distribution are computed. 

The quantity of interest is the quenched average of the characteristic exponent where 
the characteristic exponent is defined as 

The quenched average of the characteristic exponent is calculated by using the binomial 
expanded version of the distribution and is given by 

where D J  = dJi. 
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The quenched average of the characteristic exponent can be expressed as a combinatorial 
sum of impurity configurations of the one-dimensional chain. The integral in (28) is over 
all values of the coupling Ji which picks out all the configurations with k antifemomagnetic 
impurities and sums over all possible realizations of these configurations. 

In general, (28) depends on the position of the k impurities through the distance 
separating domains. This dependence can be viewed as an effective interaction between 
domains. By neglecting the implicit distance dependence in Ai'), the domains can be 
considered as non-interacting and configurations with the same number of domain walls 
are equivalent. This approximation of non-interacting domains is called the isoentropic 
approximation since the entropy of all configurations with the same number of domain 
walls is equal. 

This approach allows for the use of simple counting techniques to enumerate the different 
configurations of impurities, and we use the approximate expression for A:'' -+ Ai+)(q) 
derived in the previous section in which k impurities forming q domains was considered. 
This will enable the evaluation of the combinatoric sum for the quenched average of 
the characteristic exponent within the isoentropic approximation. The sum over the 
configurations in (28) for the characteristic exponent is thus simplified and is given by 

where g N ( k .  q)  counts the number of ways of choosing k antiferromagnetic bonds out of N 
possible bonds such that they form q domains. The combinatorial factor is evaluated using 
the generating function technique, and is found to be 

The resulting combinatoric sum over both k and q indices can be evaluated using a symbolic 
residue calculus for the binomial coefficients (see [9]). This calculation is outlined in the 
appendiw. 

The quenched average of the characteristic exponent is obtained by expanding the 
logarithm in the combinatorial sum. This is a formal expansion of the logarithm and 
we will consider the two possible factorizations of A p ) ( q ) .  We can factor out the first term 
in AF)(q )  and the quenched average of the characteristic exponent is given by 

($)) = p l o g ( l + u ) + ( l  -p) log(l+v)+-log(l+a")-  PN ( l - p ) N l o g ( l + b N ) + ~  
N N 

(30) 

within the isoentropic approximation. We define 

where 

hl = pa' + (1 - p)b' + ,/4(1- ~ ) b ' e - ~ ' ~  t (pa' - (1 - p)b'I2 (32) 

and 

hz = pa' + (1 - p)b' - d4(1 - ~ ) b ' e - ~ ' ~  + (pa' - (1 - p)b')2. (33) 
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We also define the ratio of the eigenvalues of the rotated transfer mahices for the 
ferromagnetic case as 

1 - U  

l + u  
a=- 

and for the antiferromagnetic case as 

1 - V  

l + u  
b = - .  

Alternatively, we can factor out the second term in the expression for AP)(p) and the 
quenched average of the characteristic exponent becomes 

(34) !I-P)Nlog(l + b") - 4A(1 - p )  2p - 1 
- 

N 

where p was defined previously. We note that 

11 = pa' + (1 - p)b' + J4(1 - p)bre4rA + (pa' - (1 - p)br )2  (35) 

and 

12 = pa' + (1 - p)b' - J4(1 - p)b'e4'* + (pa' - (1 - p ) b r ) z .  (36) 

Furthermore, we define the ratio of the eigenvalues of the rotated transfer matrices for the 
ferromagnetic case as 

1 + U  a=- 
1-U 

and for the antiferromagnetic case as 

l + V  

1 - v  
b = - .  

Equations (30) and (34) represent the quenched average of the characteristic exponent 
of the f J  spin glass within the isoentropic approximation for a finite lattice of N sites. 
The quantities a and b are simply the ratios of the eigenvalues of the transfer mahices. In 
general, the ratio of the antiferromagnetic eigenvalues are negative ( b  -= 0) which implies 
that A I  and 12 can be complex quantities which are mutually conjugate. Therefore, it is 
expected that p is real. Furthermore, in the expressions for 11 and 12, we note that the ratio 
of the ferromagnetic and antiferromagnetic eigenvalues raised to the power r are weighted 
by the probability of ferromagnetic coupling and antiferromagnetic coupling, respectively. 
The expression for p treats the two types of coupling in a symmetric fashion. 

First, we evaluate (&I) since 11 and 12 are real valued. In figure 4 the ratio lh.$.l[ 

versus r is shown; the inset shows the plot of log(h1) versus r. From these two figures, we 
infer that 12 << 11 and that 11 is an exponential function of r of the form 11 = Cexp(orr). 
The quantities C and (Y can be obtained numerically and we can approximate 
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2 4 6 8 10 
,(la-1.6 h=Oa 

Figure 4. R d o  of lAz/Ai[  versus r .  x = f. IKI = 1.5 and h = 0.5. The inset is a plot of 
log(Al) versus r .  

From the above expression we obtain 

- (' - P)"log ( 1  + b") - 4A(1 - p )  
N 

where a and b are the ratios of the large to the small eigenvalues of the transfer matrices. 
Alternatively, we can evaluate ($)) where hl and 1 2  are mutually conjugate. In 

figure (5) log(lhl1) versus r is shown. From this figure, it is clear that modulus of I t  is an 
exponential function of r of the form [Al l  = C'exp(f3r). The phase of hl can be determined 
numerically and is zero for r even, and n / 2  for r odd. The quantities C' and f3 can likewise 
be obtained numerically and we can approximate 

From the above expression we obtain 

($') -p1og(I+u)+(1  - p ) l o g ( l + u ) + ~ l o g ( l + a N )  P" - ( l - P ) N l o g ( l + b N )  N 

+- 2C" (cos2 ( y )  log( 1 + 2") + sin' ( y)  log( 1 - 2")) (38) 
(2P)" 
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where a and b are the ratios of the small to the large eigenvalues of the transfer matrices. 
Equations (37) and (38) represent approximate expressions for the quenched average of 

the characteristic exponent for both factorizations. They depend on A, C and (Y or C’ and 
p which are determined from the numerical results. 

4. conclusions 

We have demonstrated that the random matrix product can be represented by an iterated 
conformal map. The underlying analytic structure of the matrix product can be understood 
from the general properties of the conformal mapping. The fixed points of the conformal 
map lie on the unit circle and we have demonstrated that for kJ model that the mapping 
converges rapidly to the unit circle. 

Funhennore, the complex eigenvalues and the map itself can be parametrized in terms 
of elementary functions and the case of non-commutative transfer matrices is manifest as a 
simple phase in the parametrized map. The parametrized map can also be used to derive an 
approximate expression for the complex eigenvalues of the matrix product. The approximate 
form of the complex eigenvalues can be used in the evaluation of the quenched average of 
the characteristic exponent in the + J .  

The quenched average of the characteristic exponent is then evaluated by simple 
counting arguments to enumerate the various impurity configurations. It is important 
to note that the replica trick has not been employed to evaluate the averages and that 
by using resummation techniques, we are able to obtain an explicit expression for the 
quenched average of the characteristic exponent which depends on a small set of numerically 
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determined parameters. 

general and can be applied to other one-dimensional disordered systems. 

is amenable to this approach [15,16]. 

Finally, the technique of conversion of matrix products to iterated conformal maps is 

The investigation of the one-dimensional Anderson model with binary on site disorder 
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Appendix 

The evaluation of the combinatoric sum is performed using a symbolic residue calculus 
for the binomial coefficients. In other words the binomial coefficients are represented as 
contour integrals 

Using the above expression for the binomial coefficient, the combinatorial sum in (29) is 
given by 

where U = (1 - p ) / p  and a and b are the ratios of the eigenvalues as defined in the text. 
It is important to note that we have already factored out the first or the second term in the 
approximate expression for @)(q). 

The sum over q can be evaluated by expanding the logarithm and using the binomial 
expansion and is (1 + w / z ) ~  - 1 where w = and r is an integer index from the 
expansion of the log. We now want to evaluate the sum over k in the second term in 
the above expansion. This can be done by using the series expansion for log(1 + x ) .  
Concentrating on the second term. we find 

z(l  + z) - x(z + w) 
aNr dz 
r 2,si 

C =  N p N ~ ( - ) ' + l - ~ - ( l + z ) N - ' l o g (  CO 

,=I 

where 

P 
and both x and w depend on the index r .  

To proceed, we now must evaluate the contour integral over a contour which excludes 
the origin since the integrand has an essential singularity at z = 0. This is done by noting 
that 

1 2 2 + 1 - x  

z(z + 1) - x ( z  + w )  
- 2 z + l - x  

z(1 t 2 )  -zzx +(1 + z)N ( 
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The contour integral can be computed since the second term on the RHS has simple poles 
at zo = -1 + x ,  and at 

(1 - x )  J(1 - x ) * + 4 x w  z* = -- 
2 2 

The total derivative gives no contribution to the contour integal, and the pole at z = 0 
gives no contribution since the contour is chosen in such a way that the origin is excluded. 
The only non-zero contribution comes from the residues at z+ and zo. Using the symbolic 
residue theorem, the combinatoric sum is 

and we find 
arN 

r 

m 
p = E(-)'+'- ((1 + z + ) N  + (1 + 2 - ) N )  

r=l 

which is the result obtained in (31), 
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